
Eidgenössische
Technische Hochschule
Zürich

Ecole polytechnique fédérale de Zurich
Politecnico federale di Zurigo
Federal Institute of Technology at Zurich

Departement of Computer Science 30 October 2023
Johannes Lengler, David Steurer
Lucas Slot, Manuel Wiedmer, Hongjie Chen, Ding Jingqiu

Algorithms & Data Structures Exercise sheet 6 HS 23

The solutions for this sheet are submitted at the beginning of the exercise class on 06 November 2023.

Exercises that are marked by ∗ are challenge exercises. They do not count towards bonus points.

You can use results from previous parts without solving those parts.

Data structures.

Exercise 6.1 Finding the i-th smallest key in an AVL tree (1 point).

Let A be an AVL tree (as described in the lecture) with n nodes. Let k1 < k2 < . . . < kn be the keys
of A, in ascending order. For a given 1 ≤ i ≤ n, our goal is to find ki, the i-th smallest key of A.

(a) Suppose i = 1. Describe an algorithm that finds k1 in O(log n) time.

Hint: An AVL tree is a BST (binary search tree).

(b) Describe an algorithm that finds ki in O(i · log n) time.

Hint: You are allowed to make changes to A while executing your algorithm.

It turns out that we can find ki in time O(log n), if we modify the definition of an AVL tree a bit.

(c) Modify the definition of an AVL tree by storing two additional integers sl(v), sr(v) ∈ N in each
node v. Assuming now that A satisfies your modified definition, describe an algorithm that finds
ki in O(log n) time.

Remark. Your modified definition should still allow for the search, insert and remove operations to
be performed in O(log n) time, but you are not required to prove that this is the case.

Exercise 6.2 Round and square brackets.

A string of characters on the alphabet {A, . . . , Z, (, ), [, ]} is called well-formed if either

1. It does not contain any round or square brackets, or

2. It can be obtained from an empty string by performing a sequence of the following operations,
in any order and with an arbitrary number of repetitions:

(a) Take two non-empty well-formed strings a and b and concatenate them to obtain ab,

(b) Take a well-formed string a and add a pair of round brackets around it to obtain (a),

(c) Take a well-formed string a and add a pair of square brackets around it to obtain [a].



The above reflects the intuitive definition that all brackets in the string are ‘matched’ by a bracket of the
same type. For example, s = FOO(BAR[A]), is well-formed, since it is the concatenation of s1 = FOO,
which is well-formed by 1., and s2 = (BAR[A]), which is also well-formed. String s2 is well-formed
because it is obtained by operation 2(b) from s3 = BAR[A], which is well-formed as the concatenation
of well-formed strings s4 = BAR (by 1.) and s5 = [A] (by 2(c) and 1.). String t = FOO[(BAR]) is not
well-formed, since there is no way to obtain it from the above rules. Indeed, to be able to insert the
only pair of square brackets according to the rules, its content t1 = (BARmust be well-formed, but this
is impossible since t1 contains only one bracket.

Provide an algorithm that determines whether a string of characters is well-formed. Justify briefly why
your algorithm is correct, and provide a precise analysis of its complexity.

Hint: Use a data structure from the last exercise sheet.

Dynamic programming.

Exercise 6.3 Introduction to dynamic programming (1 point).

Consider the recurrence
A1 = 1

A2 = 2

A3 = 3

A4 = 4

An = An−1 +An−3 + 2An−4 for n ≥ 5.

(a) Provide a recursive function (using pseudo code) that computes An for n ∈ N. You do not have to
argue correctness.

(b) Lower bound the run time of your recursion from (a) by Ω(Cn) for some constant C > 1.

(c) Improve the run time of your algorithm using memoization. Provide pseudo code of the improved
algorithm and analyze its run time.

(d) Compute An using bottom-up dynamic programming and state the run time of your algorithm.
Address the following aspects in your solution:

(1) Definition of the DP table: What are the dimensions of the tableDP [. . .]? What is the meaning
of each entry?

(2) Computation of an entry: How can an entry be computed from the values of other entries?
Specify the base cases, i.e., the entries that do not depend on others.

(3) Calculation order: In which order can entries be computed so that values needed for each entry
have been determined in previous steps?

(4) Extracting the solution: How can the final solution be extracted once the table has been filled?

(5) Run time: What is the run time of your solution?

Exercise 6.4 Jumping game (1 point).

2



We consider the jumping game from the lecture for the following array of length n = 10:

A[1..n] = [2, 4, 2, 2, 1, 1, 1, 1, 5, 2].

We start at position 1. From our current position i, we may jump a distance of at most A[i] forwards.
Our goal is to reach the end of the array in as few jumps as possible. Recall the dynamic programming
solution given for the problem in the lecture, revolving around the numbers:

M [k] := ‘largest position reachable in at most k jumps’.

In this exercise, we compare two different methods for computing theM [k].

(a) Consider the recursive relation:

M [0] = 1,

M [k] = the maximum element of the array Rk,
(R)

where Rk is the array with indices i in the range 1 ≤ i ≤ M [k − 1] and Rk[i] := A[i] + i.
Compute M [k] for k = 1, 2, . . . ,K using relation (R), where K is the smallest integer for which
M [K] ≥ n = 10. For each 1 ≤ k ≤ K , write down the array Rk used in the recursion. Finally,
compute

∑K
k=1 |Rk|.

(b) Now consider the recursive relation:

M ′[0] = 1,

M ′[1] = 1 +A[1],

M ′[k] = the maximum element of the array R′
k,

(R’)

were R′
k is the array with indices i in the rangeM ′[k − 2] < i ≤ M ′[k − 1] and R′

k[i] := A[i] + i.
Compute M ′[k] for k = 1, 2, . . . ,K using relation (R’), where K is the smallest integer for which
M ′[K] ≥ n = 10. For each 2 ≤ k ≤ K , write down the array R′

k used in the recursion. Finally,
compute

∑K
k=1 |R′

k|.

(c*) Now let A be an arbitrary array of size n ≥ 2 containing positive, non-repeating1 integers.
Let M [k],M ′[k] be the numbers computed using relations (R) and (R’), respectively. Prove that
M [k] = M ′[k] for all k ≥ 0.

Hint: Use induction. First show thatM [0] = M ′[0] and thatM [1] = M ′[1]. Then, use the induction
hypothesis ‘M [k− 2] = M ′[k− 2] andM [k− 1] = M ′[k− 1]’ to show thatmaxRk = maxR′

k for
all k ≥ 2.

Exercise 6.5 Longest common subsequence and edit distance.

In this exercise, we are going to consider two examples of problems that have been discussed in the
lecture.
For part (a), we are going to look at the problem of finding the longest common subsequence in two
arrays. So, we are given two arrays,A of length n, andB of lengthm, and we want to find their longest
common subsequence and its length. The subsequence does not have to be contiguous. For example, if
A = [1, 8, 5, 2, 3, 4] and B = [8, 2, 5, 1, 9, 3], a longest common subsequence is 8, 5, 3 and its length is
3. Notice that 8, 2, 3 is another longest common subsequence.
For part (b), we are looking at the problem of determining the edit distance between two sequences. We

1This assumption is only for convenience in writing the proof.

3



are again given two arrays, A of length n, and B of lengthm. We want to find the smallest number of
operations in “change”, “insert” and “remove” that are needed to transform one array into the other. If
for exampleA = [“A”, “N”, “D”] andB = [“A”, “R”, “E”], then the edit distance is 2 since we can perform
2 “change” operations to transform A to B but no less than 2 operations work for transforming A into
B.

(a) Given are the two arrays
A = [7, 6, 3, 2, 8, 4, 5, 1]

and
B = [3, 9, 10, 8, 7, 1, 2, 6, 4, 5].

Use the dynamic programming algorithm from the lecture to find the length of a longest common
subsequence and the subsequence itself. Show all necessary tables and information you used to
obtain the solution.

(b) Define the arrays
A = [“S”, “O”, “R”, “T”]

and
B = [“S”, “E”, “A”, “R”, “C”, “H”].

Use the dynamic programming algorithm from the lecture to find the edit distance between these
arrays. Also determine which operations one needs to achieve this number of operations. Show all
necessary tables and information you used to obtain the solution.

4


